Authors
Amirsadra Mohseni
Reyhane Ghorbani Nia
Aida Tafrishi
Mario León López
Xin-Zhan Liu
Jason Stajich
Stefano Lonardi
Ian Wheeldon
Publication Year
2025

DOI #: 10.1093 Designing CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) single guide RNA (sgRNA) libraries targeting entire kingdoms of life will significantly advance genetic research in diverse and underexplored taxa. Current sgRNA design tools are often species-specific and fail to scale to large, phylogenetically diverse datasets, limiting their applicability to comparative genomics, evolutionary studies, and biotechnology. Here, we introduce ALLEGRO, a combinatorial optimization algorithm designed to compose minimal, yet highly effective sgRNA libraries targeting thousands of species at the same time. Leveraging integer linear programming, ALLEGRO identified compact sgRNA sets simultaneously targeting multiple genes of interest for over 2000 species across the fungal kingdom. We experimentally validated sgRNAs designed by ALLEGRO in Kluyveromyces marxianusKomagataella phaffiiYarrowia lipolytica, and Saccharomyces cerevisiae, confirming successful genome edits. Additionally, we employed a generalized Cas9–ribonucleoprotein delivery system to apply ALLEGRO’s sgRNA libraries to untested fungal genomes, such as Rhodotorula araucariae. Our experimental findings, together with cross-validation, demonstrate that ALLEGRO facilitates efficient CRISPR genome editing, enabling the development of universal sgRNA libraries applicable to entire taxonomic groups.

Publication Type
DOI #10.1093